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ABSTRACT

Traditional approach of combining the method of pseudopotentials (in electron theory of

metals) and methods of statistical physics (of liquid state) has been used for the consistent

description of thermodynamic properties of liquid non-transition metals.  New version of

thermodynamic perturbation theory (related to the base system of hard spheres) has been developed

for ionic subsystem of metal.  Application of the theory has resulted in obtaining simple equation

of state for Helmholtz free energy and achieving the consistent description of thermodynamic

properties.  Comparison of obtained results with experimental data for liquid alkali metals and lead,

bismuth, magnesium in the range of temperature from melting points to 2000 K suggests the

effectiveness of developed equations.
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1.  INTRODUCTION

Electron theory of metals combined with the methods of statistical physics gives clear and

complete explanation of different types of interparticle interactions (electron-electron, ion-electron,

effective ion-ion), their energies and contributions into bulk thermodynamic (and other properties)

of metals.  For the majority of alkali metals satisfactory agreement of predicted values and

experimental data can be achieved in third order of perturbation of ion-electron interaction

pseudopotential [1 - 3].  However, sufficiently correct description of particular contributions into

the interactions has not been achieved yet.  Compensation of the different contributions of opposite

signs takes place in free energy expression and its derivatives.  Satisfactory agreement can be

achieved with experimental data on energy, capacity, and density for given temperature and

pressure. Nevertheless, satisfactory agreement with isothermal compressibility and sound velocity

cannot be achieved yet.  General reasons behind this are known.  The unsolved problem is that of

refinement of exchange-correlated contributions into energy, compressibility, and static relative

dielectric constant of moderately dense electron gas.  Despite of extensive research in this direction

[4 - 7], simple interpolating expressions [4] still remain the best.  These expressions provide

characteristics of effective potential of interionic interactions which are in satisfactory agreement

with experimental data on structure factor of liquid metals [2, 3].  On the other side, further

development of thermodynamic perturbation theory is needed for calculation of the contributions

into free energy of ionic subsystem of metal.  Barker-Henderson theory [8] is the most successful

version of such development.  However even in this version  effective diameter of hard spheres (as

the base system) is overestimated by  0.05 - 0.15 
o

A .  This leads to the higher packing of particles.

It appeared that screening of paired interionic interactions in liquid metal is significantly

different from the nature of screening of paired interparticle interactions in molecular liquid.  That

is why present authors have developed the modification of thermodynamic perturbation theory

based on the integral equation [9, 10] which is more specific for metallic liquids.  It has allowed to



obtain comparatively simple equation of state for free energy of liquid non-transition metals.  This

equation has provided better and consistent agreement with all thermodynamic properties.

2.  BASIC RELATIONS

2.1  Thermodynamic Perturbation Theory

Introduction of perturbing part  F1 R  , relative to intermolecular potential  F0 R    of the

base system of hard sphere particles, with the help of dimensionless coefficient  l :

             F R,l  = F0 R  + lF1 R  ,     0 £ l £ 1                                      (1)

yields the following expression for Helmholtz free energy:

                  

F
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In equation (2),  F0  is Helmholtz free energy of hard sphere system of the same density,  g R,l   -

particle radial distribution function,  N  - number of particle in the system,  n  - particle density,

 T  - temperature,  kB  - Boltzman constant,  R  - distance between particles in liquid.

Relation between  F R   and  g R   has been selected in the form of the integral equation

[9, 10] with the use of structure factor  S q  :

F R
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 = - ln g R  + K R  ,                                                                      (3)

where             K R  = 1
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Substitution of (1) into (3) with subsequent differentiation with respect to  l  yields
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kBT
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and substitution of (4) into (2) with subsequent integration over  l  and Fourier-transformation

yields expression ( in Fourier space of variable  q  ):
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In     Dh q = 0   º  S q = 0   -  S0 q = 0  ,    DK q = 0   =  h2 q = 0   -  h0
2 q = 0     subscript   Ò 0  Ò

refers to the base system of hard spheres.

Taking into account that the base system of hard spheres is considered to be of the same

density as the perturbed system, it is possible to require the conditions [2] be satisfied

h q  - h0 q  q2 dq = 0 ,
0

¥

      (6)
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Now equation (5) with the help of conditions (6) can be cast into the form:

F - F0
NkBT

 @  -  1
2

 S q = 0  - S0 q = 0   +  1
2

 h2 q = 0  - h0
2 q = 0  .                                  (7)

Using the relation between structure factor  S q   and direct correlation function  C(q)

S q  = 1
1 - nC q

estimation of thermodynamic perturbation theory series can be obtained:

F - F0
NkBT

  =  -  1
2

 S0
2  nC1 q = 0   +  ...    ,                                           (8)

where  C1 = C - C0 .

 In low-temperature liquid metal S0 q = 0   is of order  10 - 3 - 10 - 2, and order of  nC1(q =

0)  in chaos phase approach  ( nC1 = - F1 / kBT )  is  101 .  Thus first term of series (8) has order of

10 - 5 - 10 - 3 .  These estimations (according to (9)) verify known fact of closeness of macroscopic

properties of liquid metals in melting point region and properties of corresponding system of hard

spheres.  For example, for non-transition metals at temperature near melting point heat capacity is

(3.4 - 4.0)×kB , and excess entropy is (1.8 - 4.6) ×kB . For the system of hard spheres of the same

density the corresponding values are  (3.4 - 4.1)×kB  and  (3.1 - 5.0)×kB .



2.2  Free Energy of Liquid Non-Transition Metal

According to the results obtained by applying the method of pseudopotentials in electron

theory of metals and statistical theory of liquid state, free energy per particle  F r,T   at temperature

T  and density  r  can be presented

F r,T  = Fe + nzb 0  + DE + Fi  .                                                   (9)

Here,  Fe  - energy of homogenous electron gas which can be expressed be Nozieres-Pines

interpolation relation [1]

Fe =  3
5

 kF
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2p
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4
 1/3
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  ,                                      (10)

where  kF  - FermiÕs wave vector,  z  - valence of metal.  b(0)  is non-coulomb part of ion-electron

pseudopotential  w(q)  in  metal:

b 0   = lim
q ®  0

  w q   +  4pze2

q2
   .                                                        (11)

In equation (9),  DE  also depends on mean density of metal only and can be expressed as

DE = 4pze2

q2
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where       x = 
q

2kF
 ,        F x  = H2 e x  - 1  / e x  ,         H = q2w q  /4pze2 ,      

v   - volume per ion,  e(q)  - static dielectric constant of electron gas.

The contribution  Fi  is considered to be structure-dependent free energy of the system of

classical particles (ions) of effective paired interionic potential  F R  .  For non-transition liquid

metals this potential can be expressed as

F R  = Fc R  + Fe R   ,                                                                          (13)

where  Fc R  = z
2 e2

R
  - direct Coulomb interionic interation, and  Fe R   - indirect interaction among  

ions through electrons of conductivity:
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¥

defined in terms  w(q)  and  e(q)  by  well-known  equations [1, 2].  Using introduced notation,

equation (9) can be rewritten

F r,T  = Fe + nzb 0  + 1
2

 Fe R = 0  - 1
2

 F R = 0  + Fi  ,                                       (14)

where  F q = 0   =  2nzb 0   +  zv 2 ¶
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p
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Taking into account the orders of quantitative estimations in (8), it can be assumed that  Fi @ F0 .

Thus, equation (14) for free energy is a function weakly depending on the form of interionic

potential, and pseudopotential  w(q) , and dielectric constant  e(q) . Hence, it is possible to avoid

the problems of detailed description of dielectric constant  e(q)  and exact calculation of integrals

the following types

F R
0

¥

 R2 dR ,        F R
0

¥

 g0 R  R2 dR .

It is important that selected  e(q)  satisfies the summation rule for compressibility of electron gas,

and correct asymptotic behavior for  q®0 and  q®¥ .  These requirements can be satisfied by the

following mathematical expression

e q  - 1
e q

 = exp  - q2 b
2

kF    .                                                   (15)

If model pseudopotential is selected to be

w q  = - 4pze2

q2
 cos qRc                                                          (16)

then
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Finally, as a results of (14), the appropriate equation for free energy:

F  @  Fe  -  12
 z2

b p
  1 + exp  - Rc

b

2
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2Fe
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  +  F0 .                                  (19)

Equation (19) is two-fold parametric:  Rc  from (16), and hard spheres packing parameter

h = p
6

 nd3 from  F0 . 

Exactly as it took place in Barker-Henderson theory, as well as in the general case of  weak

repelling, hard sphere diameter  d  is a function of temperature.  For example, in the case of (n,m)

Lennard-Jones potential, such dependence can be presented by

d T  = a - bT1/n  ,                                                               (20)

where  a , b = Const , and  n  depends on the specifics of repulsion and attraction.  If parameters

a ,  b ,  n  in equation (20) are selected from the conditions describing thermodynamic properties in

melting point region of metal, then all thermodynamic properties can be obtained from (19).

3.  RESULTS

In previous publications [2, 3] authors calculated thermodynamic properties of liquid alkali

metals (Na, K, Rb, Cs) with the use of equation (9), values of dielectric  constant  e(q)  in the

approximation [4] and model pseudopotential of ion-electron interactions [1]:

w R  = { ze2U/Rc,             " R < Rc

ze2/R,                   " R < Rc

                                                 (21)

w R  = ze2  
exp - R/Rc  - 1

 R
  +  a

Rc
 exp  R

Rc
  .                                          (22)

For alkali metals second and third orders of perturbation of the pseudopotential have been applied.

For Pb, Bi, Mg only third order of perturbation of the pseudopotential has yielded satisfactory

results.  In order to determine contribution associated with  Fi  Barker-Henderson perturbation

theory [8] has been used.  The results of such calculation for the case of Na and Pb are presented



in Tables I, II.  Analysis of these results shows that it is very difficult problem of consistent

selection of the energy approximation of electron gas, dielectric constant of electron gas, and the

perturbation theory for determined effective interionic interaction. The addressed issue was a

development of new approach which would allow to avoid above mentioned problems at least

partly.

Obtained equations (8), (14), (19) have been applied for new calculations of

thermodynamic properties of above mentioned metals.  Satisfactory agreement of predicted values

and experimental data has been achieved.  Comparison in Tables I, II represents better agreement

for isobaric capacity and isothermal compressibility.  Unfortunately, values on isothermal

compressibility still contain high errors.  Obtained results for liquid lead are illustrated in Table III.

These results are obtained for the following values of the parameters in equations (16 - 20):

a = 4.36 , b = 0.356 , n = 6 , Rc = 0.647×aB ,

where  aB  - Bohr radius.

Obtained results showed that obtained modification of thermodynamic perturbation theory

is successful in applying at least to liquid non-transition metal.  The simplifying assumptions

regarding analysis and conclusions about static dielectric of electron gas have been confirmed.

Comparison of obtained results with experimental data suggests that developed method can be used

for standardization procedure of thermodynamic data on the properties of liquid non-transition

metals.
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Table I.  Comparison of Predicted Values and Experimental Data on Properties of Liquid Sodium

( 1 - calculation with the use of pseudopotential in equation (22),

   2 - calculation with the use of pseudopotential in equation (21))

Tempera-
ture

K

Density

( kg×m- 3)

Isobaric

( J ×

heat

kg- 1×K- 1)

capacity Isother-
mal

com-
press-
ibility,

(MPa-1)

bT×105

1 2 [11] 1 2 [11] 1 2 [11]

400 911.5 919.3 920.2 1672.4 1710.7 1371.0 9.5 11.7 18.7

600 864.1 864.6 877.4 1514.7 1518.0 1301.0 12.2 14.9 24.2

800

1000

1200

1400

1600

1800

2000

824.2

787.6

753.2

720.0

689.4

659.2

630.0

818.2

776.2

737.6

 700.7

666.2

633.9

602.9

831.0

783.0

737.7

682.1

629.1

574.0

519.0

1415.0

1327.9

1301.6

1265.3

1241.1

1237.9

1190.0

1392.6

1332.0

1289.7

1261.3

1235.5

1215.5

1214.1

1260.4

1252.8

1279.9

1342.5

1440.5

1574.3

1743.9

14.9

18.0

21.5

25.1

29.2

33.0

38.4

18.3

21.8

26.6

31.3

35.7

40.0

47.3

30.5

38.3

48.3

62.1

82.4

 116.0

 182.5



Table II.  Comparison of Predicted Values with Experimental Data on Properties of Liquid Lead

( 1 - calculation with the use of pseudopotential in equation (22))

Temperature

K

Density

( kg×m-3 )

Isothermal

(J×kg- 1

heat capacity

×K - 1)

Isothermal compressibility

bT×105

( MPa-1 )

1 [12] 1 [12] 1 [13, 14]

601

800

1000

1200

1400

10672

10428

10198

9982

9781

10686

10430

10198

-

-

145.3

140.4

136.4

133.4

132.1

146.4

143.3

140.1

-

-

2.7

2.8

2.9

3.0

3.2

l

3.7

4.2

1600

1800

2000

9594

9421

9263

-

-

-

132.6

135.1

140.1

-

-

-

3.4

3.7

4.1



Table III.  Comparison of Predicted Values with Experimental Data on Properties of Liquid Lead

( 1 - calculation with the use of pseudopotential in equation (19))

Temperature

K

Density

�( kg×m- 3)

Isothermal

(J×kg- 1

heat capacity

×K - 1)

Isothermal compressibility

bT×105

( MPa -1 )

1 [12] 1 [12] 1 [13, 14]

600

700

800

900

1000

1100

1200

1300

1400

1500

10689

10573

10453

10329

10203

10073

9938

9799

6952

9497

10686

-

10430

-

10198

146.3

144.4

142.8

141.5

140.7

140.2

140.1

140.6

141.8

143.9

146.4

143.3

140.1

-

-

3.7

4.1

4.5

5.0

5.6

6.2

6.9

7.8

8.9

10.2

3.5 - 3.2

-

3.7

-

4.2

1600

1700

1800

1900

9330

9145

8931

8652

147.5

153.6

165.6

201.5

12.13

14.9

19.7

32.2


